This Page Is Inserted by IFW Operations and is not a part of the Official Record ### **BEST AVAILABLE IMAGES** Defective images within this document are accurate representations of the original documents submitted by the applicant. Defects in the images may include (but are not limited to): - BLACK BORDERS - TEXT CUT OFF AT TOP, BOTTOM OR SIDES - FADED TEXT - ILLEGIBLE TEXT - SKEWED/SLANTED IMAGES - COLORED PHOTOS - BLACK OR VERY BLACK AND WHITE DARK PHOTOS - GRAY SCALE DOCUMENTS ### IMAGES ARE BEST AVAILABLE COPY. As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox. THIS PAGE BLANK (USPTO) #### **PCT** ### WORLD INTELLECTUAL PROPERTY ORGANIZATION INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) Interdictional Patent Classification 5: (11) International Publication Number: WO 92/15682 C12N 15/12, 15/62, C07K 13/00 (43) International Publication Date: 17 September 1992 (17.09.92) (21) International Application Number: PCT/US92/01478 (72) Inventors; and (75) inventors/Applicants (for US only): HUSTON, James, S. [US/US]; 5 Drew Road, Chestnut Hill, MA 02167 (US). OPPERMANN, Hermann [US/US]; 25 Summer Hill Road, Medway, MA 02053 (US). TIMASHEFF, Serge, N. [US/US]; 209 Bristol Road, Wellesley Hills, MA (22) International Filing Date: 27 February 1992 (27.02.92) (30) Priority data: 662,226 27 February 1991 (27.02.91) US 02181 (US). (74) Agent: PITCHER, Edmund, R.; Patent Department, Creative Biomolecules Inc., 35 South Street, Hopkinton, MA 01748 (US). (60) Parent Application or Grant (63) Related by Continuation 662,226 (CIP) 27 February 1991 (27.02.91) Filed on (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent), US. (71) Applicant (for all designated States except US): CREATIVE BIOMOLECULES, INC. [US/US]; 35 South Street, Hopkinton, MA 01748 (US). Published With international search report. With amended claims. (54) Title: SERINE-RICH PEPTIDE LINKERS #### (57) Abstract Disclosed are serine-rich peptide linkers for linking two or more protein domains to form a fused protein. The peptide linkers contain at least 40 % serine residues and preferably have the formula (Ser, Ser, Ser, Gly), where y is > 1. The resulting fused domains are biologically active together or individually, have improved solubility in physiological media, and improved resistance to proteolysis. ### FOR THE PURPOSES OF INFORMATION ONLY Codes used to identify States party to the PCT on the front pages of pamphiets publishing international applications under the PCT. | | 4 | FI | l-inland | ML. | Mail | |-------|--------------------------|-----|------------------------------|-----------|-------------------------| | AT | Amtris | | | MIN | Morgolist | | AU | Australia | FR | France | MAR | Mauritanis | | - | Barbados | GA | Clabon | | | | 25 | Belgium | C3 | United Kingdom | MW | Malowi | | | | GN | Guinea | NL. | Netherlands | | 27 | Berhins Fram | | Greens | NO | Norway | | BG | Bulgaria. | CR. | | PL | Poland | | N | Benin . | BU | Hungary | 80 | Romania | | 88. | Bendi | 枢 | Ireland | | | | CA | Chanda | IT | ludy | RU | Russian Federation | | | |)# | Japan | 50 | Sudan | | CF. | Central African Republic | | Democratic People's Republic | 25 | Sweden | | œ | (page | KP | | SN | Source | | CH CH | Seritore instal | | of Kerca | | Soviet Union | | a | ('Sas d'Ivoire | KR | Republic of Korca | SU | | | | | £ | (Jedanacia | 110 | Chad | | CM | Cheeroon | | Sri Lanta | TC | Togo | | C# | (Lexhonkwakin | LK | | US | Liebod States of Americ | | DE. | Correcty | w | Looping | _ | | | DAK | Desmark | MC | Manage | | | | | | | | | | - 1 - #### SBRINE-RICH PEPTIDE LINKERS #### Field of the Invention The present invention is in the fields of peptide linkers, fusion proteins and single-chain antibodies. #### Background of the Invention Two or more polypeptides may be connected to form a fusion protein. This is accomplished most readily by fusing the parent genes that encode the proteins of interest. Production of fusion proteins that recover the functional activities of the parent proteins may be facilitated by connecting genes with a bridging DNA segment encoding a peptide linker that is spliced between the polypeptides connected in tandem. The present invention addresses a novel class of linkers that confer unexpected and desirable qualities on the fusion protein products. An example of one variety of such fusion proteins is an antibody binding site protein also known as a single-chain Fv (sFv) which incorporates the complete antibody binding site in a single polypeptide chain. Antibody binding site proteins can be produced by connecting the heavy chain variable region $(V_{_{\rm H}})$ of an antibody to the light chain variable region (V_r) by means of a peptide linker. See, PCT International Publication No. WO 88/09344 the teachings of which are hereby incorporated herein by reference. Such sFv proteins have been produced to date that faithfully reproduce the binding affinities and specificities of the parent monoclonal antibody. However, there have been some drawbacks associated with them, namely, that some sPv fusion proteins have tended to exhibit low solubility in physiologically acceptable media. For example, the anti-digoxin 26-10 sPv protein, which binds to the cardiac glycoside digoxin, can be refolded in 0.01M NaOAc buffer, pH 5.5, to which urea is added to a final concentration of 0.25M to produce approximately 22% active anti-digoxin sFv protein. The anti-digoxin sFv is inactive as a pure protein in phosphate buffered saline (PBS) which is a standard buffer that approximates the ionic strength and neutral pH conditions of human serum. In order to retain digoxin binding activity in PBS the 26-10 sFv must be stored in 0.01 M sodium acetate, pH 5.5, 0.25 M urea diluted to nanomolar concentrations in PBS containing 1% horse serum or 0.1% gelatin, a concentration which is too low for most therapeutic or pharmaceutical use. Therefore, it is an object of the invention to design and prepare fusion proteins which are 1) soluble at high concentrations in physiological media, and 2) resistant to proteolytic degredation. ۲ . کد #### Summary of the Invention . The present invention relates to a peptide linker comprising a large proportion of serine residues which, when used to connect two polypeptide domains, produces a fusion protein which has increased solubility in aqueous media and improved resistance to proteolysis. In one aspect, the invention provides a family of biosynthetic proteins comprising first and second protein domains which are biologically active individually or act together to effect biological activity, wherein the domains are connected by a peptide linker comprising the sequence (X, X, X, X, Gly), wherein y typically is 2 or greater, up to two Xs in each unit are Thr, and the remaining Xs in each unit are Ser. Preferably, the linker takes the form (Ser, Ser, Ser, Ser, Gly) $_{\mathbf{v}}$ where Y is greater than 1. The linker preferably comprises at least 75 percent serine residues. The linker can be used to prepare single chain binding site proteins wherein one of the protein domains attached to the linker comprises or mimicks the structure of an antibody heavy chain variable region and the other domain comprises or mimicks the structure of an antibody light chain variable domain. radioactive isotope advantageously may be attached to such structures to produce a family of imaging agents having high specificity for target structure dictated by the particular affinity and specificity of the single chain binding site. Alternatively, the linker may be used to connect a polypeptide ligand and a polypeptide effector. For example, a ligand can be a protein capable of binding to a receptor or adhesion molecule on a cell in vivo, and the effector a protein capable of affecting the metabolism of the cell. Examples of such constructs include those wherein the ligand is itself a single chain immunoglobulin binding site or some other form of binding protein or antibody fragment, and the effector is, for example, a toxin. Preferred linkers for sPv comprise between 8 and 40 amino acids, more preferably 10-15, most preferably 13, wherein at least 40%, and preferably 50% are serine. Glycine is a preferred amino acid for remaining residues; threonine may also be used; and preferably, charged residues are avoided. Fusion proteins containing the serine-rich peptide linker are also the subject of the present invention, as are DNAs encoding the proteins, cells expressing them, and method of making them. The serine-rich peptide linkers of the present invention can be used to connect the subunit polypeptides of a biologically active protein, that is, linking one polypeptide domain with another polypeptide domain, thereby forming a biologically active fusion protein; or to fuse one biologically active polypeptide to another biologically active peptide, thereby forming a bifunctional fusion protein expressing both biological activities. A particularly effective linker for forming this protein contains the following amino acid sequence (sequence ID No. 1): -Ser-Gly-Ser-Ser-Ser-Ser-Ser-Ser-Ser-Gly-Ser-. The serine-rich linkers of the present invention produce proteins which are biologically active and which remain in solution at a physiologically acceptable pH and ionic strength at much higher concentrations than would have been predicted from experience. The serine-rich peptide linkers of the present invention often can provide significant improvements in refolding properties of the fusion protein expressed in procaryotes. The present serinerich linkers are
resistant to proteolysis, thus fusion proteins which are relatively stable in vivo can be made using the present linker and method. In particular, use of the linkers of the present invention to fuse domains mimicking $\mathbf{V}_{\mathbf{H}}$ and $\mathbf{V}_{\mathbf{L}}$ from monoclonal antibody results in single chain binding site proteins which dissolve in physiological media, retain their activity at high concentrations, and resist lysis by endogenous proteases. SUBSTITUTE SHEET #### Detailed Description of the Invention The serine-rich peptide linkers of the present invention are used to link through peptide bonded structure two or more polypeptide domains. The polypeptide domains individually may be biologically active proteins or active polypeptide segments, for example, in which case a multifunctional protein is produced. Alternatively, the two domains may interact cooperatively to effect the biological function. The resulting protein containing the linker(s) is referred to herein as a fusion protein. The preferred length of a serine-rich peptide of the present invention depends upon the nature of the protein domains to be connected. The linker must be of sufficient length to allow proper folding of the resulting fusion protein. The length required can be estimated as follows: 1. Single-Chain Fv (sFv). For a single chain antibody binding site comprising mimicks of the light and heavy chain variable regions of an antibody protein (hereinafter, sFv), the linker preferably should be able to span the 3.5 nanometer (nm) distance between its points of covalent attachment between the C-terminus of one and the N-terminus of the other V domain without distortion of the native Fv conformation. Given the 0.38 nm distance between adjacent peptide bonds, a preferred linker should be at least about 10 residues in length. Most preferable, a 13-15 amino acid residue linker is used in order to avoid conformational strain from an overly short connection, while avoiding steric interference with the combining site from an excessively long peptide. 7 - - 2. Connecting domains in a dimeric or multimeric protein for which a 3-dimensional conformation is known. Given a 3-dimensional structure of the protein of interest, the minimum surface distance between the chain termini to be bridged, d (in nanometers), should be determined, and then the approximate number of residues in the linker, n, is calculated by dividing d by 0.38 nm (the peptide unit length). A preferred length should be defined ultimately by empirically testing linkers of different sizes, but the calculated value provides a good first approximation. - 3. Connecting domains in a dimeric or multimeric protein for which no 3-dimensional conformation is known. In the absence of information regarding the protein's 3-dimensional structure, the appropriate linker length can be determined operationally by testing a series of linkers (e.g., 5, 10, 15, 20, or 40 amino acid residues) in order to find the range of usable linker sizes. Fine adjustment to the linker length then can be made by comparing a series of single-chain proteins (e.g., if the usable n values were initially 15 and 20, one might test 14, 15, 16, 17, 18, 19, 20, and 21) to see which fusion protein has the highest specific activity. - 4. Connection of independent domains (i.e., independently functional proteinsor polypeptides) or elements of secondary structure (alpha or beta strands). For optimal utility, this application requires empirically testing serine-rich linkers of differing lengths to determine what works well. In general, a preferred linker length will be the smallest compatible with full recovery of the native functions and structures of interest. Linkers wherein $1 \le y \le 4$ work well in many instances. SUBSTITUTE SHEET After the ideal length of the peptide linker is determined, the percentage of serine residues present in the linker can be optimized. As was stated above, preferably at least 75% of a peptide linker of the present invention is serine residues. The currently preferred linker is (SerSerSerGly), [residues 3-7 of sequence ID No. 1] where y comprises an integer from 1 to 5. Additional residues may extend C-terminal or Nterminal of the linker; preferably such additional residues comprising Ser, Thr, or Gly. Up to two of each of the serine residues on each segment may be replaced by Thr, but this has the tendency to decrease the water solubility of the fusion constructs. For constructs wherein the two linked domains cooperate to effect a single biological function, such as an sFv, it is preferred to avoid use of charged residues. Generally, in linkers of more than 10 residues long, any naturally occurring amino acid may be used once, possibly twice, without unduly degrading the properties of the linker. The serine-rich peptide linker can be used to connect a protein or polypeptide domain with a biologically active peptide, or one biologically active peptide to another to produce a fusion protein having increased solubility, improved folding properties and greater resistance to proteolysis in comparison to fusion proteins using non-serine rich linkers. The linker can be used to make a functional fusion protein from two unrelated proteins that retain the activities of both proteins. For example, a polypeptide toxin can be fused by means of a linker to an antibody, antibody fragment, sFv or peptide ligand capable of binding to a specific receptor to form a fusion protein which binds to the receptor on the cell and kills the cell. Fusion protein according to the present invention can be produced by amino acid synthesis, if the amino acid sequence is known, or preferably by art-recognized cloning techniques. For example, an oligonucleotide encoding the serine-rich linker is ligated between the genes encoding the domains of interest to form one fused gene encoding the entire single-chain protein. The 5' end of the linker oligonucleotide is fused to the 3' end of the first gene, and the 3' end of the linker is fused to the 5' end of the second gene. Any number of genes can be connected in tandem array to encode multi-functional fusion proteins using the serine-rich polypeptide linker of the present invention. The entire fused gene can be transfected into a host cell by means of an appropriate expression vector. In a preferred embodiment of the present invention, amino acid sequences mimicking the light (V_L) and heavy (V_H) chain variable regions of an antibody are linked to form a single chain antibody binding site (sFv) which preferably is free of immunoglobulin constant region. Single chain antibody binding sites are described in detail, for example, in U.S. Patent No. 5,019,513, the disclosure of which is incorporated herein by reference. A particularly effective serinerich linker for an sFv protein is a linker having the following amino acid sequence: (Sequence ID No. 1) -Ser-Gly-Ser-Ser-Ser-Ser-Gly-Ser-. That is, in this embodiment y=2; Ser, Gly precedes the modular sequences, and Ser follows them. The serinerich linker joins the $\rm V_H$ with the $\rm V_L$ (or vice versa) to produce a novel sPv fusion protein having substantially increased solubility, and resistance to lysis by endogenous proteases. A preferred genus of linkers comprises a sequence having the formula: (Sequence ID No. 3 residues 3 - 7) $(X, X, X, X, Gly)_y$ Where up to two Xs in each unit can be Thr, the remaining Xs are Ser, and y in between 1 and 5. A method for producing a sPv is described in PCT Application No. US88/01737, the teachings of which are incorporated herein by reference. In general, the gene encoding the variable region from the heavy chain (V_H) of an antibody is connected at the DNA level to the variable region of the light chain (V_L) by an appropriate oligonucleotide. Upon translation, the resultant hybrid gene forms a single polypeptide chain comprising the two variable domains bridged by a linker peptide. The sFv fusion protein comprises a single polypeptide chain with the sequence V_H - kinker> - V_L or V_L - kinker> - V_H , as opposed to the classical Fv heterodimer of V_H and V_L . About 3/4 of each variable region polypeptide sequence is partitioned into four framework regions (FRs) that form a scaffold or support structure for the antigen binding site, which is constituted by the remaining residues defining three complementary determining regions (CDRs) which form loops connecting the FRs. The sFv is thus preferably composed of 8 FRs, 6 CDRs, and a linker segment, where the V_H sequence can be abbreviated as: FR1-H1-FR2-H2-FR3-H3-FR4; and the V_{I} sequence as FR1-L1-FR2-L2-FR3-L3-FR4. The predominant secondary structure in immunoglobulin V regions is the twisted β -sheet. A current interpretation of Fv architecture views the FRs as forming two concentric β -barrels, with the CDR loops connecting antiparallel β -strands of the inner barrel. The CDRs of a given murine monoclonal antibody may be grafted onto the FRs of human Fv regions in a process termed "humanization" or CDR replacement. Humanized antibodies promise minimal immunogenicity when sFv fusion proteins are administered to patients. Humanized single chain biosynthetic antibody binding sites, and how to make and use them, are described in detail in U.S. 5,019,513, as are methods of producing various other FR/CDR chimerics. The general features of a viable peptide linker for an sFv fusion protein are governed by the architecture and chemistry of Fv regions. It is known that the sFv may be assembled in either domain order, V_H -linker- V_L or V_L -linker- V_H , where the linker bridges the gap between the carboxyl (C) and amino (N) termini of the respective domains. For purposes of sFv design, the C-terminus of the amino-terminal V_H or V_L domain is considered to be the last residue of that sequence which is compactly folded, corresponding approximately to the end of the
canonical V region sequence. The amino-terminal V domain is thus defined to be free of switch region residues that link the variable and constant domains of a given H or L chain, which makes the linker sequence an architectural element in sFv structure that corresponds to bridging residues, regardless of their origin. In several examples, fused sFv constructs have incorporated residues from the switch region, even extending into the first constant domain. In principle, sFv proteins may be constructed to incorporate the Fv region of any monoclonal antibody regardless of its class or antigen specificity. Departures from parent V region sequences may involve changes in CDRs to modify antigen affinity or specificity, or to redefine complementarity, as well as wholesale alteration of framework regions to effect humanization of the sFv or for other purposes. In any event, an effective assay, e.g., a binding assay, must be available for the parent antibody and its sFv analogue. Design of such an assay is well within the skill of the art. Pusion proteins such as sFv immunotoxins intrinsically provide an assay by their toxicity to target cells in culture. The construction of a single-chain Fv typically is accomplished in two or three phases: (1) isolation of cDNA for the variable regions; (2) modification of the isolated V_H and V_L domains to permit their joining to form a single chain via a linker; (3) expression of the single-chain Fv protein. The assembled sFv gene may then be progressively altered to modify sFv properties. Escherichia coli (B. coli) has generally been the source of most sFv proteins although other expression systems can be used to generate sFv proteins. The V_H and V_L genes for a given monoclonal antibody are most conveniently derived from the cDNA of its parent hybridoma cell line. Cloning of V_H and V_L from hybridoma cDNA has been facilitated by library construction kits using lambda vectors such as Lambda --- ZAP^x (Stratagene). If the nucleotide and/or amino acid sequences of the V domains are known, then the gene or the protein can be made synthetically. Alternatively, a semisynthetic approach can be taken by appropriately modifying other available cDNA clones or sFv genes by site-directed mutagenesis. Many alternative DNA probes have been used for V gene cloning from hybridoma cDNA libraries. Probes for constant regions have general utility provided that they match the class of the relevant heavy or light chain constant domain. Unrearranged genomic clones containing the J-segments have even broader utility, but the extent of sequence homology and hybridization stringency may be unknown. Mixed pools of synthetic oligonucleotides based on the J-regions of known amino acid sequence have been used. If the parental myeloma fusion partner was transcribing an endogenous immunoglobulin gene, the authentic clones for the V genes of interest should be distinguished from the genes of endogenous origin by examining their DNA sequences in a Genbank homology search. The cloning steps described above may be simplified by the use of polymerase chain reaction (PCR) technology. For example, immunoglobulin cDNA can be transcribed from the monoclonal cell line by reverse transcriptase prior to amplification by $\underline{\text{Taq}}$ polymerase using specially designed primers. Primers used for isolation of V genes may also contain appropriate restriction sequences to speed sFv and fusion protein assembly. Extensions of the appropriate primers preferably also should encode parts of the desired linker sequence such that the PCR amplification products of V_{H} and V_{L} genes can be mixed to form the single-chain Fv gene directly. The application of PCR directly to human peripheral blood lymphocytes offers the opportunity to clone human V regions directly in bacteria. See, Davis et al. Biotechnology, 9, (2):165-169 (1991). Refinement of antibody binding sites is possible by using filamentous bacteriophage that allow the expression of peptides or polypeptides on their surface. These methods have permitted the construction of phage antibodies that express functional sFv on their surface as well as epitope libraries that can be searched for peptides that bind to particular combining sites. With appropriate affinity isolation steps, this sPv-phage methodology offers the opportunity to generate mutants of a given sPv with desired changes in specificity and affinity as well as to provide for a refinement process in successive cycles of modification. See McCafferty et al., Nature, 348:552 (1990), Parmely et al. Gene, 38:305 (1988), Scott et al. Science, 249:386 (1990), Devlin et al. Science, 249:404 (1990), and Cwirla et al., Proc. Nat. Acad. Sci. U.S.A., 87:6378 (1990). The placement of restriction sites in an sFv gene can be standardized to facilitate the exchange of individual V_{H} , V_{L} linker elements, or leaders (See U.S. 5,019,513, supra). The selection of particular restriction sites can be governed by the choice of stereotypical sequences that may be fused to different sPv genes. In mammalian and bacterial secretion; secretion signal peptides are cleaved from the N-termini of secreted proteins by signal peptidases. The production of sFv proteins by intracellular accumulation in inclusion bodies also may be exploited. In such cases a restriction site for gene fusion and corresponding peptide cleavage site are placed at the N-terminus of either V_H or V_L . Frequently a cleavage site susceptible to mild acid for release of the fusion leader is chosen. In a general scheme, a SacI site serves as an adapter at the C-Terminal end of $V_{\rm H}$. A large number of $V_{\rm H}$ regions end in the sequence -Val-Ser-Ser-, which is compatible with the codons for a SacI site (G AGC TCT), to which the linker may be attached. The linker of the present invention can be arranged such that a -Gly-Seris positioned at the C-terminal end of the linker encoded by GGA-TCC to generate a BamHI site, which is useful provided that the same site is not chosen for the beginning of $V_{\rm H}$. Alternatively, an XhoI site (CTCGAG) can be placed at the C-terminal end of the linker by including another serine to make a -Gly-Ser-Ser- sequence that can be encoded by GGC-TCG-AGN-, which contains the XhoI site. For sFv genes encoding V_H -Linker- V_L , typically a PstI site is positioned at the 3' end of the V_L following the new stop condon, which forms a standard site for ligation to expression vectors. If any of these restriction sites occur elsewhere in the cDNA, they can be removed by silent base changes using site directed mutagenesis. Similar designs can be used to develop a standard architecture for V_L - V_H constructions. Expression of fusion proteins in <u>E. coli</u> as insoluble inclusion bodies provides a reliable method for producing sPv proteins. This method allows for rapid evaluation of the level of expression and activity of the sPv fusion protein while eliminating variables associated with direct expression or secretion. Some fusion partners tend not to interfere with antigen binding which may simplify screening for sPv fusion protein during purification. Fusion protein derived from inclusion bodies must be purified and refolded in vitro to recover antigen binding activity. Mild acid hydrolysis can be used to cleave a labile Asp-Pro peptide bond between the leader and sFv yielding proline at the sFv amino terminus. In other situations, leader cleavage can rely on chemical or enzymatic hydrolysis at specifically engineered sites, such as CNBr cleavage of a unique methionine, hydroxylamine cleavage of the peptide bond between Asn-Gly, and enzymatic digestion at specific cleavage sites such as those recognized by factor Xa, enterokinase or V8 protease. Direct expression of intracellular sFv proteins which yields the desired sFv without a leader attached is possible for single-chain Fv analogues and sFv fusion proteins. Again, the isolation of inclusion bodies must be followed by refolding and purification. This approach avoids the steps needed for leader removal but direct expression can be complicated by intracellular proteolysis of the cloned protein. The denaturation transitions of Pab fragments from polyclonal antibodies are known to cover a broad range of denaturant. The denaturation of monoclonal antibody Pab fragments or component domains exhibit relatively sharp denaturation transitions over a limited range of denaturant. Thus, sPv proteins can be expected to differ similarly covering a broad range of stabilities and denaturation properties which appear to be paralleled by their preferences for distinct refolding procedures. Useful refolding protocols include dilution refolding, redox refolding and disulfide restricted refolding. In general, all these procedures benefit from the enhanced solubility conferred by the serine-rich linker of the present invention. Dilution refolding relies on the observation that fully reduced and denatured antibody fragments can refold upon removal of denaturant and reducing agent with recovery of specific binding activity. Redox refolding utilizes a glutathione redox couple to catalyze disulfide interchange as the protein refolds into its native state. For an sPv protein having a prior art linker such as (GlyGlyGLyGlySer), the protein is diluted from a fully reduced state in 6 M urea into 3 M urea + 25 mM Tris-HCL + 10 mM EDTA, pH 8, to yield a final concentration of approximately 0.1 mg/ml. In a representative protein, the sPv unfolding transition begins around 3 M urea and consequently the refolding buffer represents nearnative solvent conditions. Under these conditions, the protein can presumably reform approximations to the V domain structures wherein rapid disulfide interchange can occur until a stable equilibrium is attained. After incubation at room temperature for 16 hours, the material is dialyzed first against urea buffer
lacking glutathione and then against 0.01 M sodium acetate + 0.25 M urea, pH 5.5. In contrast to the sFv protein having the prior art linker described above, with the same sFv protein, but having a serine-rich linker of the present invention, the 3M urea-glutathione refolding solution can be dialyzed directly into 0.05 M potassium phosphate, pH 7, 0.15 NaCl (PBS). Disulfide restricted refolding offers still another route to obtaining active sPv which involves initial formation of intrachain disulfides in the fully denatured sPv. This capitalizes on the favored reversibility of antibody refolding when disulfides are kept intact. Disulfide crosslinks should restrict the initial refolding pathways available to the molecule as well as other residues adjacent to cysteinyl residues that are close in the native state. For chains with the correct disulfide paring the recovery of a native structure should be favored while those chains with incorrect disulfide pairs must necessarily produce nonnative species upon 'emoval of denaturant. Although this refolding method may give a lower yield than other procedures, it may be able to tolerate higher protein concentrations during refolding. Proteins secreted into the periplasmic space or into the culture medium appear to refold properly with formation of the correct disulfide bonds. In the majority of cases the signal peptide sequence is removed by a bacterial signal peptidase to generate a product with its natural amino terminus. Even though most secretion systems currently give considerably lower yields than intracellular expression, the rapidity of obtaining correctly folded and active sFv proteins can be of decisive value for protein engineering. The omph or pelB signal sequence can be used to direct secretion of the sFv. If some sPv analogues or fusion proteins exhibit lower binding affinities than the parent antibody, further purification of the sFv protein or additional refinement of antigen binding assays may be needed. the other hand, such sPv behavior may require modification of protein design. Changes at the aminotermini of V domains may on occasion perturb a particular combining site. Thus, if an sPv were to exhibit a lower affinity for antigen than the parent Pab fragment, one could test for a possible N-terminal perturbation effect. For instance, given a V_{r} - V_{H} that was suspect, the $V_{\rm H} - V_{\rm L}$ construction could be made and tested. If the initially observed perturbation were changed or eliminated in the alternate sPv species, then the effect could be traced to the initial sFv design. The invention will be understood further from the following nonlimiting examples. #### **EXAMPLES** Example 1. Preparation and Evaluation of an Antidigoxin 26-10 sFv Having a Serine-rich Linker An anti-digoxin 26-10 sFv containing a serine-rich peptide linker (Sequence No. 1, identified below) of the present invention was prepared as follows: (Sequence ID No. 1) -Ser-Gly-Ser-Ser-Ser-Gly-Ser-Ser-Ser-Gly-Ser-1 2 3 4 5 6 7 8 9 10 11 12 13 A set of synthetic oligonucleotides was prepared using phosphoramidite chemistry on a Cruachem DNA synthesizer, model PS250. The nucleotide sequence in the appropriate reading frame encodes the polypeptide from 1-12 while residue 13 is incorporated as part of the Bam H1 site that forms upon fusion to the downstream Ban H1 fragment that encodes V_L ; and the first serine residue in the linker was attached to a serine at the end of the 26-10 $V_{\rm H}$ region of the antibody. This is shown more clearly in Sequence ID Nos. 4 and 5. The synthetic oligonucleotide sequence which was used in the cassette mutagenesis was as follows: #### Sequence ID No. 2 CC TCC GGA TCT TCA TCT AGC GGT TCC AGC TCG AGT G TCG AGG AGG CCT AGA AGT AGA TCG CCA AGG TCG AGC TCA CCT AG Saci The complementary oligomers, when annealed to each other, present a cohesive end of a SacI site upstream and a BamHI site downstream. The nucleotide sequence was designed to contain useful 6-base restriction sites which will allow combination with other single chain molecules and additional modifications of the leader. The above-described synthetic oligonucleotides were assembled with the \mathbf{V}_{H} and \mathbf{V}_{L} regions of the anti-digoxin 26-10 gene as follows: A pUC plasmid containing the 26-10 sPv gene (disclosed in PCT International Publication No. WO 88/09344) containing a (Gly-Gly-Gly-Gly-Ser) n linker between a SacI site at the end of the $V_{\rm H}$ region and a unique BamHI site which had been inserted at the beginning of $V_{\rm L}$ region was opened at SacI and BamHI to release the sequence encoding for the prior art linker and to accept the oligonucleotides defined by Sequence No. 2. The resulting plasmid was called pH899. The new 26-10 sFv gene of pH899 was inserted into an expression vector, pH895, for fusion with a modified fragment B (MFB) of staphlococcal protein A. (See Sequence ID No. 4.) The modified FB leader has glutamyl resides at positions FB-36 and FB-37 instead of 2 aspartyl residues, which reduces unwanted ancillary cleavage during acid treatment. The modified pH895 is essentially equivalent to pC105 (except for the slightly modified leader) as previously described in Biochemistry, 29(35):8024-8030 (1990). The assembly was done by replacing the old sPv fragment with the new sPv between KbaI (in V_H) and PstI (at the end of sPv) in the expression plasmid pH895, opened at unique XbaI and PstI sites. The resulting new expression vector was named pH908. An expression vector utilizing an MLE-MFB leader was constructed as follows. #### SUBSTITUTE SHEET The mFB-sFv gene was retrieved by treating pH908 with BcoRI and PstI and inserted into a trp expression vector containing the modified trp LE leader peptide (MLE) producing plasmid pH912. This vector resembled essentially the pD312 plasmid as described in PNAS, 85: 5879-5883 (1988) but having removed from it the BcoRI site situated between the Tet-R gene and the SspI site. Plasmid pH912 contained the MLE-mFB-sFv gene shown in sequence 4. The MLE starts at the N-terminus of the protein and ends at the glutamic acid residue, amino acid residue 59. The mFB leader sequence starts at the methionine residue, amino acid residue 61, and ends at the aspartic acid residue, amino acid residue 121. Phenylanine residue 60 is technically part of the Eco RI restriction site sequence at the junction of the MLE and mFB. Expression of sPv transfected into <u>B</u>. <u>coli</u> (strain JM101) by the plasmid pH912 was under control of the <u>trp</u> promoter. <u>B</u>. <u>coli</u> was transformed by pH912 under selection by tetracycline. Expression was induced in M9 minimal medium by addition of indole acrylic acid (10 μ g/ml) at a cell density with $A_{600} = 1$ resulting in high level expression and formation of inclusion bodies which were harvested from cell paste. After expression in <u>B. coli</u> of the sFv protein containing the novel linker of the present invention, the resultant cells were suspended in 25 mM Tris-HCl, pH 8, and 10m mM EDTA treated with 0.1% lysozyme overnight, sonicated at a high setting for three 5 minute periods in the cold, and spun in a preparative centrifuge at 11,200 x g for 30 minutes. For large scale preparation of inclusion bodies, the cells are concentrated by ultrafiltration and then lysed with a laboratory homogenizer such as with model 15MR, APV homogenizer manufactured by Gaulin, Inc. The inclusion bodies are then collected by centrifugation. The resultant pellet was then washed with a buffer containing 3 M urea, 25 mM Tris-HCl, pH8, and 10 mEDTA. The purification of the 26-10 sFv containing the linker of the present invention from the MLE-mFB-sFv fusion protein was then accomplished according to the following procedure: ### 1) Solubilization of Fusion Protein in Guanidine Hydrochloride The MLB-mFB-sFv inclusion bodies were weighed and were then dissolved in a 6.7 M GuHC1 (guanidine hydrochloride) which had been dissolved in 10% acetic acid. An amount of GuHC1 equal to the weight of the recovered inclusion bodies was then added to the solution and dissolved to compensate for the water present in the inclusion body pellet. # 2) Acid Cleavage of the Unique Asp-Pro Bond at the Junction of the Leader and 26-10 sFv The Asp-Pro bond (amino acid residues 121 and 122 of Sequence Nos. 4 and 5) was cleaved in the following manner. Glacial acetic acid was added to the solution of step 1 to 10% of the total volume of the solution. The pH of the solution was then adjusted to 2.5 with concentrated HC1. This solution was then incubated at 37°C for 96 hours. The reaction was stopped by adding 9 volumes of cold ethanol, stored at -20°C for several hours, followed by centrifugation to yield a pellet of precipitated 26-10 sFv and uncleaved fusion protein. The heavy chain variable region of the sFv molecule extended from amino acid residues 242 to 254; and the variable light region extended from amino acid residue 255 to 367 of Sequence Nos. 4 and 5. Note also that .12 » . «« Sequence No. 6 and 7 shows a similar sPv starting with methionine at residues 1 followed by $V_{\rm H}$ (residues 2-120), linker (121-133), and $V_{\rm L}$ (134-246). This gene product was expressed directly by the T7 expression system with formation of inclusion bodies. #### 3) Re-dissolution of Cleavage Products The precipitated sPv cleavage mixture from step 2 was weighed and dissolved in a solution of 6 M GuHCl + 25 mM Tris HCl + 10 mM EDTA having a pH of 8.6. Solid GuHCl in an amount equal to the weight of the sFv cleavage mixture from step two was then added and dissolved in the solution. The pH of the solution was then adjusted to 8.6 and dithiothreitol was added to the solution such that the resultant solution contained 10 mM dithiothreitol. The solution was then incubated at room temperature for 5 hours. #### 4) Renaturation of 26-10 sPv The solution obtained from step 3 was then
diluted 70-fold to a concentration of about 0.2mg of protein/ml with a buffer solution containing 3 M urea, 25 mM Tris-HCl, pH 8, 10 mM EDTA 1 mM oxidized gluthathione, 0.1 mM reduced gluthathione, and incubated at room temperature for 16 hours. The resultant protein solution was then dialyzed in the cold against PBSA to complete the refolding of the sFv protein. ## 5) Affinity Purification of the Active Anti-digoxin 26-10 sPv The refolded protein from step 4 was loaded onto a column containing ouabain-amine-Sepharose 4B, and the column was washed successively with PBSA, followed by two column volumes of 1 M NaCl in PBSA and then again with PBSA to remove salt. Finally, the active protein was displaced from the resin by 20 mM ouabain in PBSA. Absorbance measurements at 280 nm indicated which fractions contained active protein. However, the spectra of the protein and ouabain overlap. Consequently, ouabain was removed by exhaustive dialysis against PBSA in order to accurately quantitate the protein yield. ### 6) Removal of Uncleaved Fusion Protein and the MLB-mFB Leader Finally, the solution from step 5 containing the active refolded protein (sFv and MLE-mFB-sFv) was chromatographed on an IgG-Sepharose column in PBSA buffer. The uncleaved MLB-mFB-sFv protein bound to the immobilized immunoglobulin and the column effluent contained essentially pure sFv. In conclusion, the incorporation of a serine-rich peptide linker of 13 residues [Ser-Gly-(Ser-Ser-Ser-Ser-Gly)₂-Ser-] in the 26-10 sFv yielded significant improvements over the 26-10 sFv with a glycine-rich linker of 15 residues, [-(Gly-Gly-Gly-Gly-Ser)₃]. The serine-rich peptide linker of the present invention results in a number of improvements over the previous peptide linkers including: 1. Refolding and storage conditions are consistent with normal serum conditions, thereby making applications to pharmacology and toxicology accessible. The 26-10 sFv can be renatured in PBS (0.05 M potassium phosphate, 0.15 M NaCl, pH 7.0); 0.03% azide is added as a bacteriostatic agent for laboratory purposes but would be excluded in any animal or clinical applications. The old linker, 26-10 sFv had to be renatured into 0.01 M sodium acetate, pH 5.5, with 0.25 M urea added to enhance the level of active protein. - 2. Solubility was vastly improved from a limit of about 50D₂₈₀ units per ml (about 3 mg/ml) to 52 OD₂₈₀ units per ml (about 33 mg/ml), and possibly greater in buffers other than PBSA. The highly concentrated protein solution was measured directly with a 0.2 mm path length cell. The protein concentration was estimated by multiplying by 50 the absorptions at 280 nm, subtracting twice the scattering absorbance at 333 nm, which yields a corrected A280 of about 52 units per ml. - 3. Fidelity of the antigen binding site was retained by the new serine-rich linker 26-10 sPv, which is consistent with an uncharged linker peptide that has minimal interactions with the V domains. - 4. Enhanced stability at normal serum pH and ionic strength. In PSBSA, 26-10 sPv with the (GGGGS)₃ linker loses binding activity irreversibly whereas the 26-10 sPv containing the new serine-rich linker is completely stable in PBSA. - 5. Bnhanced resistance to proteolysis. The presence of the serine-rich linker improves resistance to endogenous proteases in vivo, which results in a longer plasma/half-life of the fusion protein. # <u>Bxample 2.</u> Preparation of a Pusion Protein Having a Serine Rich Linker A fusion protein was prepared containing a serine rich linker linking two unrelated proteins. A fusion gene was constructed as described in Example 1 above, except that in lieu of the \mathbf{V}_{L} and \mathbf{V}_{H} genes described in Example 1, genes encoding the following proteins were fused: the dominant <a href="https://dhf.rg/dh (Sequence No. 8, nucleotide 577-620, amino acid residues 193-207) The four residues SVTV (numbers 189-192 of Seq. ID No. 8) can be regarded as part of the linker. These were left over from the sFv from which the linker sequences used in this example was derived. The resulting protein was a functional fusion protein encoding domains from two unrelated proteins which retained the activity of both. Thus, this DNA included on a plasmid inparts to successfully transfected cells resistance to both methotrexate, due to the action of the DHFR enzyme, and to neomycin, due to the action of the neo expression product. #### Equivalents One skilled in the art will recognize many equivalents to the specific embodiments described herein. Such equivalents are intended to be encompassed by the following claims. #### SEQUENCE LISTING #### (1) GENERAL INFORMATION: - (1) APPLICANT: HUSTON, JAMES S OPPERHANN, HERMANN TIMASHEFF, SERGE N - (11) TITLE OF INVENTION: SERINE RICH PEPTIDE LINKER - (iii) NUMBER OF SEQUENCES: 9 - (iv) CORRESPONDENCE ADDRESS: - ADDRESSEE: CREATIVE BIOHOLECULES, INC./PATENT DEPT. (A) - STREET: 35 SOUTH STREET (B) - CITY: HOPKINTON (C) - (D) STATE: HA - (E) COUNTRY: USA - (F) ZIP: 01748 - (V) COMPUTER READABLE FORM: - (A) MEDIUM TYPE: Floppy disk - COMPUTER: IBM PC compatible - OPERATING SYSTEM: PC-DOS/HS-DOS (C) - SOFTWARE: PatentIn Release #1.0, Version #1.25 (D) - (vi) CURRENT APPLICATION DATA: - (A) APPLICATION NUMBER: - FILING DATE: (B) - (c) CLASSIFICATION: - (vii) PRIOR APPLICATION DATA: - (A) APPLICATION NUMBER: US 07/662,226 (B) FILING DATE: 27-PEB-1991 - ATTORNEY/AGENT INFORMATION: (viii) - (A) NAME: CAMPBELL ESQ, PAULA A - (B) REGISTRATION NUMBER: 32,503 - REFERENCE/DOCKET NUMBER: CRP-064PC - (ix) TELECOMMUNICATION INFORMATION: - (A) TELEPHONE: 617/248-7000 (ATTY) - (2) IMPORMATION FOR SEQ ID NO:1: - SEQUENCE CHARACTERISTICS: - (A) LENGTH: 13 amino acids - (B) TYPE: amino acid - (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..13 - OTHER INFORMATION: /note= "(SER)4-GLY LINKER. THE REPEATING SEQUENCE "(SER)4-GLY" (E.G., RES. 3-7) HAY BE REPEATED HULTIPLE TIMES (SEE SPECIFICATION.) - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser - (2) INFORMATION FOR SEQ ID NO:2: - (1) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 36 base pairs - (B) TYPE: nucleic acid - STRANDEDNESS: single (C) - (D) TOPOLOGY: linear - (11) HOLECULE TYPE: cDNA - (ix) FEATURE: - (A) NAME/KEY: misc_feature - LOCATION: 1..36 - (D) OTHER INFORMATION: /note= "LINKER SEQUENCE (TOP STRAND)" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: CCTCCGGATC TTCATCTAGC GGTTCCAGCT CGAGTG 36 - (2) INFORMATION FOR SEQ ID NO:3: - (1) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 13 amino acids - TYPE: amino acid (B) - STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..13 - (D) OTHER INFORMATION: /note= "(XAA)4-GLY LINKER, WHERE RES.3-7 ARE THE REPEATING UNIT AND UP TO 2 OF THE XAA'S IN REPEAT UNIT CAN BE THR, THE REHAINDER SER. | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3 | (xi) | SEQUENCE | DESCRIPTION: | SEQ | ID | NO:3: | |--|------|----------|--------------|-----|----|-------| |--|------|----------|--------------|-----|----|-------| Yaa Gly Yaa Yaa Yaa Yaa Gly Yaa Yaa Yaa Yaa Gly Yaa 1 #### (2) INFORMATION FOR SEQ ID NO:4: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 1110 base pairs - (B) TYPE: nucleic acid - (C) STRANDEDNESS: single (D) TOPOLOGY: linear - (ii) HOLECULE TYPE: cDNA - (ix) FEATURE: - (A) NAME/KEY: CDS - (B) LOCATION: 1..1101 #### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: | | | | | | | | | | | | | | | | ~~~ | 48 | |----------|-----------------|------------|-----|------|-----|------------|------|-----|------------|------|-----|------|-----|------|-----|-----| | ATG | ŽĀĀ. | GCA | ATT | TTC | GIA | CIG | AAA | GGT | TCA | CIG | GAC | ALIA | GAT | 176 | LAC | 45 | | net | Lys | ALA | TTE | rne | AST | Leu | ràz | GIY | 10 | rea | vsh | Arg | Asp | 15 | vah | | | Ţ | | | | 2 | | | | | 10 | | | | | | | | | TCT | CET |
erre. | GAT | CTG | GAC | GIT | CCT | ACC | GAC | CAC | | GAC | CTG | TCT | GAT | 96 | | Ser | ATO | Len | Asn | Leu | ASD | Val | AFE | Thr | AED | His | Lvs | ASD | Leu | Ser | ASD | - | | | | | 20 | | | | | 25 | • | | • | • | 30 | | • | CAC | CIG | GTT | CTG | GTC | GAC | CTG | GCT | CGI | AAC | GAC | CTG | GCT | CGT | ATC | GII | 144 | | His | Leu | Val | Leu | Val | Asp | Leu | Ala | Arg | Asn | Asp | Leu | | Arg | Ile | Val | | | | | 35 | | | | | 40 | | | | | 45 | | | | | | | | | | ~~~ | | _ | | ~- | ~ | ~ | *** | ATC | CCT | CAC | 440 | 192 | | ACT | œ | GGG | TCT | CET | TAC | GIT | 41- | GAT | 126 | Clu | TIC | TIG | 712 | Acn | ABL | 172 | | Inr | | era | Ser | Arg | TÀL | Val
55 | TIG | ash | Leu | GIU | 60 | пес | ALE | veh | asu | | | | 50 | | | | | ,, | | | | | 00 | | | | | | | AAA | TTC | AAC | AAG | GAA | CAG | CAG | AAC | GCG | TTC | TAC | GAG | ATC | TTG | CAC | CTG | 240 | | Lvs | Phe | Asn | Lvs | Glu | Gln | Gln | Asn | Ala | Phe | Tyr | Glu | Ile | Leu | His | Leu | | | 65 | | | -,- | | 70 | | | | | 75 | | | | | 80 | α | AAC | CTG | AAC | GAA | GAG | CAG | CCI | AAC | GCC | TTC | ATC | CAA | AGC | CIG | AAA | 288 | | Pro | Asn | Leu | Asn | | Glu | Gln | Arg | Asn | | Phe | Ile | Gln | Ser | Leu | Lys | | | | | | | 85 | | | | | 90 | | | | | 95 | | | | | | | | | | ^~~ | 447 | ~=~ | ~ | | CAT | ccc | AAG | | CTC | 336 | | GAA | فللقوا
در ۱۵ | | TUT | Cla | 101 | GCG
Ala | VOT | Lau | Lin | Ala | Acn | Ala | Ive | Lve | Leu | 330 | | GIU | GIU | | Ser | GIII | 26L | PTG | M211 | 105 | rea | AL & | vah | Ale | 110 | uy a | | | | | | • | UU | | | | | 103 | | | | | -10 | | | • | | AAC | GAT | CCC | CAG | GCA | CCG | AAA | TCG | GAT | CCC | GAA | GTT | CAA | CTG | CAA | CAG | 384 | | Asn | ASP | Ala | Gln | Ala | Pro | Lys | Ser | Asp | Pro | Glu | Val | Gln | Leu | Gln | Gln | | | | | 115 | | | | • | 120 | | | | | 125 | TCT GGT CCT
Ser Gly Pro
130 | GAA TTG GTT AA
Glu Leu Val Ly
13 | s Pro Gly | GCC TCT GTG
Ala Ser Val
. 140 | Arg Ket Ser | TGC 432
Cys | |---------------------------------------|--|-----------------------------------|-------------------------------------|-----------------------------------|----------------| | | GGG TAC ATT TO
Gly Tyr Ile Ph
150 | | | | | | | GGT AAG TCT CT
Gly Lys Ser La
165 | | | | | | Ser Gly Val | ACC GGC TAC AA
Thr Gly Tyr As
80 | | | | | | | AAA TCT TCC TC
Lys Ser Ser Se | | | | _ | | | GAC TCC GCG GT
Asp Ser Ala Va
21 | l Tyr Tyr | | | | | | ATG GAT TAT TG
Met Asp Tyr Tr
230 | | | | | | | CCT TCA TCT AG
Ser Ser Ser Se
245 | Gly Ser | | | | | GTA ATG ACC C
Val Het Thr G | CAG ACT CCG CT
Sin Thr Pro Le
50 | G TCT CTG (
L Ser Leu)
265 | CCG GTT TCT
Pro Val Ser | CTG GGT GAC
Leu Gly Asp
270 | CAG 816
Gln | | GCT TCT ATT T
Ala Ser Ile S
275 | CT TGC CGC TC
Ser Cys Arg Se | r TCC CAG :
r Ser Gln :
280 | TCT CTG GTC
Ser Leu Val | CAT TCT AAT
His Ser Asn
285 | GGT 864
Gly | | | TG AAC TGG TA
Au Asn Trp Ty
29 | Leu Gln | | | | | | TAC AAA GTC TC
Tyr Lys Val Se
310 | | | | | | | CCT GGT TCT GG
Ser Gly Ser Gly
325 | Thr Asp | | | | | GTC
Val | GAG
Glu | Ala | GAA
Glu
340 | GAC
Asp | CTG
Leu | GGT
Gly | ATC | TAC
Tyr
345 | Phe | TGC
Cys | TCT
Ser | CAG
Gln | ACT
Thr
350 | ACT
Thr | CAT
His | 1056 | |------------|------------|-----|-------------------|------------|------------|-------------------|-----|-------------------|-----|------------|------------|------------|-------------------|------------|------------|------| | GTA
Val | | | Thr | | | GGT
Gly
360 | | | | | | | | | | 1101 | | TAAC | TCC/ | ıc | | | | | | | | | | | | | | 1110 | - (2) INFORMATION FOR SEQ ID NO:5: - (1) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 367 amino acids - (B) TYPE: amino acid - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: protein - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Het Lys Ala Ile Phe Val Leu Lys Gly Ser Leu Asp Arg Asp Leu Asp 1 5 10 15 Ser Arg Leu Asp Leu Asp Val Arg Thr Asp His Lys Asp Leu Ser Asp . 20 25 30 His Leu Val Leu Val Asp Leu Ala Arg Asn Asp Leu Ala Arg Ile Val 35 40 Thr Pro Gly Ser Arg Tyr Val Ala Asp Leu Glu Phe Het Ala Asp Asn 50 55 60 Lys Phe Asn Lys Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His Leu 65 70 75 80 Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys 85 90 95 .Glu Glu Pro Ser Gln Ser Ala Asn Leu Leu Ala Asp Ala Lys Lys Leu 100 105 . 110 Asn Asp Ala Gln Ala Pro Lys Ser Asp Pro Glu Val Gln Leu Gln Gln 115 120 125 Ser Gly Pro Glu Leu Val Lys Pro Gly Ala Ser Val Arg Het Ser Cys 130 135 140 Lys Ser Ser Gly Tyr Ile Phe Thr Asp Phe Tyr Het Asn Trp Val Arg 145 150 150 155 Gln Ser His Gly Lys Ser Leu Asp Tyr Ile Gly Tyr Ile Ser Pro Tyr 175 Ser Gly Val Thr Gly Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu 190 Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr Het Glu Leu Arg Ser Leu 200 Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Gly Ser Ser Gly Asn 210 Lys Trp Ala Het Asp Tyr Trp Gly His Gly Ala Ser Val Thr Val Ser 230 Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Gly Ser Asp Val 255 Val Het Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ser 275 Asn Thr Tyr Leu Asn Trp Tyr Leu Gln Lys Ala Gly Gln Ser Pro Lys 300 Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg 320 Phe Ser Gly Ser Gly Ser Gly Gly Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg 335 Val Glu Ala Glu Asp Leu Gly Ile Tyr Phe Cys Ser Gln Thr Thr His 340 Val Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 355 ## (2) INFORMATION FOR SEQ ID NO:6: - (1) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 747 base pairs - (B) TYPE: nucleic acid - (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (11) HOLECULE TYPE: cDNA - (ix) FEATURE: - (A) NAME/KEY: CDS - (B) LOCATION: 1..747 | | | (xi |) S | eque | NCE ! | DESC | RIPT | ION: | SEQ | ID I | NO:6 | : | | | | | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----| | ATG
Met
1 | GAA
Glu | GII
Val | CAA
Gln | CTG
Leu
5 | CAA
Gln | CAC
Gln | TCT
Ser | GGT
Gly | CCT
Pro
10 | GAA
Glu | TTG
Leu | GIT
Val | AAA
Lys | CCT
Pro
15 | GGC
Gly | 48 | | GCC
Ala | TCT
Ser | Val
GTG | CGC
Arg.
20 | ATG
Het | TCC
Ser | TGC
Cys | AAA
Lys | TCC
Ser
25 | TCT
Ser | GGG
Gly | TAC
Tyr | ATT
Ile | TTC
Phe
30 | ACC
Thr | GAC
Asp | 96 | | TTC
Phe | TAC
Tyr | ATG
Het
35 | AAT
Asn | TGG
Trp | GII
Val | CGC
Arg | CAG
Gln
40 | TCT
Ser | CAT
His | GGT
Gly | AAG
Lys | TCT
Ser
45 | CTA
Leu | GAC
Asp | TAC
Tyr | 144 | | ATC
Ile | GGG
Gly
50 | TAC
Tyr | ATT
Ile | TCC
Ser | CCA
Pro | TAC
Tyr
55 | TCT
Ser | GGG
Gly | GTT
Val | ACC
Thr | GGC
Gly
·60 | TAC
Tyr | AAC
Asn | CAG
Gln | AAG
Lys | 192 | | TII
Phe
65 | AAA
Lys | GGT
Gly | AAG
Lys | GCG
Ala | ACC
Thr
70 | CII
Leu | ACT
Thr | GTC
Val | GAC
Asp | AAA
Lys
75 | TCT
Ser | TCC
Ser | TCA
Ser | ACT
Thr | GCT
Ala
80 | 240 | | TAC
Tyr | ATG
Ket | GAG
Glu | CTG
Leu | CGT
Arg
85 | TCT
Ser | TTG
Leu | ACC
Thr | TCT
Ser | GAG
Glu
90 | GAC
Asp | TCC
Ser | GCG
Ala | GTA
Val | TAC
Tyr
95 | TAT
Tyr | 288 | | TGC
Cys | GCG
Ala | GCC | TCC
Ser
100 | TCT
Ser | GGT
Gly | AAC
Asn | AAA
Lys | TGG
Trp
105 | GCG
Ala | ATG
Het | GAT
Asp | TAT
Tyr | TGG
Trp
110 | CTA | CAT
His | 336 | | GIY
Gly | GCT
Ala | AGC
Ser
115 | GII
Val | ACT
Thr | GTG
Val | AGC
Set | TCC
Ser
1120 | Ser | GGA
Gly | TCT
Ser | TCA
Ser | TCT
Ser
125 | AGC
Ser | GGT
Gly | TCC
Ser | 384 | | AGC
Ser | TCG
Ser
130 | AGT
Ser | GGA
Gly | TCC
Ser | GAC
Asp | GTC
Val
135 | GTA
Val | ATG
Ket | ACC
Thr | CAG
Gln | ACT
Thr
140 | CCG
Pro | CTG
Leu | TCT
Ser | CTG
Leu | 432 | | CCG
Pro
145 | GII
Val | TCT
Ser | CIG
Leu | GGT
Gly | GAC
Asp
150 | CAG
Gln | GCT
Ala | TCT
Ser | ATT
Ile | TCT
Ser
155 | TGC
Cys | CGC
Arg | TCT
Ser | TCC
Ser | CAG
Gln
160 | 480 | | TCT
Ser | CTG
Leu | GTC
Val | CAT
His | TCT
Ser
165 | aat
Asn | GCT
Gly | AAC
Asn | ACT
Thr | TAC
Tyr
170 | CTG
Leu | AAC
Asn | TGG
Trp | TAC
Tyr | CTG
Leu
175 | CAA
Gln | 528 | | AAG
Lys | GCT
Ala | GCT
Gly | CAG
Gln
180 | TCT
Ser | CCG
Pro | AAG
Lys | CIT
Leu | CTG
Leu
185 | ATC
Ile | TAC
Tyr | AAA
Lys | GTC
Val | TCT
Ser
190 | AAC
Asd | CGC | 576 | | TTC
Phe | TCT
Ser | GGT
Gly
195 | GTC
Val | CCG
Pro | GAT
Asp | CGT
Arg | TTC
Phe
200 | TCT
Ser | GCT
Gly | TCT
Ser | GCT | TCT
Ser
205 | GIY | ACT | GAC
Asp | 624 | | TTC
Phe | ACC
Thr
210 | CTG
Leu | AAG
Lys | ATC
Ile | TCT
Ser | CGT
Arg
215 | GTC
Val | GAG
Glu | GCC
Ala | GAA
Glu | GAC
Asp
220 | CTG
Leu | GGT
Gly | ATC
Ile | TAC
Tyr | 672 | |-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-----| | TTC
Phe
225 | TGC
Cys | TCT
Ser |
CAG
Gln | ACT
Thr | ACT
Thr
230 | CAT
His | GTA
Val | CCG
Pro | CCG
Pro | ACT
Thr
235 | TTT
Phe | GGT
Gly | GGT
Gly | GGC
Gly | ACC
Thr
240 | 720 | | AAG
Lys | CTC
Leu | GAG
Glu | ATT
Ile | AAA
Lys
245 | CGT
Arg | TAA | CTG | CAG | | | | | | | | 747 | # (2) INFORMATION FOR SEQ ID NO:7: - (1) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 249 amino acids - (B) TYPE: amino acid - (D) TOPOLOGY: linear - (11) MOLECULE TYPE: protein - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: Het Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly 1 5 15 Ala Ser Val Arg Het Ser Cys Lys Ser Ser Gly Tyr Ile Phe Thr Asp 20 25 30 Phe Tyr Het Asn Trp Val Arg Gln Ser His Gly Lys Ser Leu Asp Tyr 35 40 45 Ile Gly Tyr Ile Ser Pro Tyr Ser Gly Val Thr Gly Tyr Asn Gln Lys 50 55 60 Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala 65 70 75 80 Tyr Het Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr 95 Cys Ala Gly Ser Ser Gly Asn Lys Trp Ala Het Asp Tyr Trp Gly His Gly Ala Ser Val Thr Val Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser 115 120 125 Ser Ser Ser Gly Ser Asp Val Val Het Thr Gln Thr Pro Leu Ser Leu 130 135 140 Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln 145 150 155 | ••• | - | | | | | | | | | | | | | | | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Ser | Leu | Val | His | Ser
165 | Asn | Gly | Asn | Thr | Tyr
170 | Leu | Asn | Trp | Tyr | Leu
175 | Gln | | Lys | Ala | Gly | Gln
180 | Ser | Pro | Lys | Leu | Leu
185 | Ile | Tyr | Lys | Val | Ser
190 | Asn | Arg | | Phe | Ser | Gly
195 | Val | Pro | Asp | Arg | Phe
200 | Ser | Gly | Ser | Gly | Ser
205 | Gly | Thr | Asp | | Phe | Thr
210 | Leu | Lys | Ile | Ser | Arg
215 | Val | Glu | Ala | Glu | Asp
220 | Leu | Gly | Ile | Tyr | | Phe
225 | Cys | Ser | Gln | Thr | Thr
230 | His | Val | Pro | Pro | Thr
235 | Phe | Gly | Gly | Gly | Thr
240 | | Lys | Leu | Glu | Ile | Lys
245 | Arg | ## (2) INFORMATION FOR SEQ ID NO:8: - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1416 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear - (ii) HOLECULE TYPE: cDNA - (ix) PEATURE: - (A) NAME/KEY: CDS (B) LOCATION: 1..1416 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: |
 | CGA
Arg |
 |
 |
 |
 |
 |
 |
48 | |------|------------------|------|------|------|------|------|------|---------| |
 | AAG
Lys |
 |
 |
 |
 |
 |
 |
96 | | | TTC
Phe
35 |
 |
 |
 |
 |
 |
 |
144 | |
 | GIG
Val |
 |
 | |
 |
 |
 |
192 | | AAT
Asn
65 | Arg | CCT | TTA
Leu | AAG
Lys | GAC
Asp
70 | AGA
Arg | ATT | AAT
Asn | ATA
Ile | GTT
Val
75 | CTC
Leu | AGT
Ser | AGA
Arg | GAA
Glu | CTC
Leu
80 | | 240 | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|-----| | AAA
Lys | GAA
Glu | CCA
Pro | CCA | CGA
Arg
85 | GGA
Gly | GCT
Ala | CAT
His | TTT
Phe | CTT
Leu
90 | GCC
Ala | AAA
Lys | AGT
Ser | TTG
Leu | GAT
Asp
95 | GAT
Asp | | 288 | | GCC
Ala | TTA
Leu | AGA
Arg | CTT
Leu
100 | ATT | GAA
Glu | CAA
Gln | CCG
Pro | GAA
Glu
105 | TTG
Leu | GCA
Ala | AGT
Ser | aaa
Lys | GTA
Val
110 | GAC
Asp | ATG
Net | | 336 | | GTT
Val | TGG
Trp | ATA
Ile
115 | GTC
Val | GGA
Gly | GGC | AGT
Ser | TCT
Ser
120 | GTT
Val | TAC
Tyr | CAG
Gln | GAA
Glu | GCC
Ala
125 | ATG
Het | AAT
Asn | CAA
Gln | | 384 | | | | | | | | TTT
Phe
135 | | | | | | | | | | | 432 | | AGT
Ser
145 | gac
Asp | ACG
Thr | TII
Phe | TTC
Phe | CCA
Pro
150 | GAA
Glu | ATT
Ile | GAT
Asp | TTG
Leu | GGG
Gly
155 | AAA
Lys | TAT
Tyr | AAA
Lys | CTT
Leu | CTC
Leu
160 | | 480 | | CCA
Pro | GAA
Glu | TAC
Tyr | CCA
Pro | GGC
Gly
165 | GTC
Val | CTC
Leu | TCT
Ser | GAG
Glu | GTC
Val
170 | CAG
Gln | GAG
Glu | GAA
Glu | AAA
Lys | GGC
Gly
175 | ATC
Ile | | 528 | | AAG
Lys | TAT
Tyr | AAG
Lys | TTT
Phe
180 | GAA
Glu | GTC
Val | TAC
Tyr | GAG
Glu | AAG
Lys
185 | AAA
Lys | GAC
Asp | GCT
Ala | AGC
Ser | GII
Val
190 | ACT
Thr | GTG
Val | ٠ | 576 | | AGC
Ser | TCC
Ser | TCC
Ser
195 | GGA
Gly | TCT
Ser | TCA
Ser | TCT
Ser | AGC
Ser
200 | GCT
Gly | TCC
Ser | AGC
Ser | TCG
Ser | AGT
Ser
205 | GGA
Gly | TCT
Ser | ATG
Het | | 624 | | ATT
Ile | GAA
Glu
210 | CAA
Gln | GAT
Asp | GGA
Gly | TTG
Leu | CAC
His
215 | GCA
Ala | GGT
Gly | TCT
Ser | CCG
Pro | GCC
Ala
220 | GCT
Ala | TGG
Trp | GTG
Val | GAG
Glu | | 672 | | AGG
Arg
225 | CTA
Leu | TTC
Phe | GCC | TAT
Tyr | GAC
Asp
230 | TGG
Trp | GCA
Ala | CAA
Gln | CAG
Gln | ACA
Thr
235 | ATC
Ile | GCC | TGC
Cys | TCT
Ser | GAT
Asp
240 | | 720 | | GCC
Ala | GCC | GTG
Val | TTC
Phe | CGG
Arg
245 | CIG
Leu | TCA
Ser | GCG
Ala | CAG
Gln | GGG
Gly
250 | CGC
Arg | CCG
Pro | GII
Val | CII
Leu | TTT
Phe
255 | GTC
Val | | 768 | | AAG
Lys | ACC
Thr | GAC
Asp | CTG
Leu
260 | TCC
Ser | GGT
Gly | GCC
Ala | CTG
Leu | AAT
Asn
265 | GAA
Glu | CTG
Leu | CAG
Gln | GAC
Asp | GAG
Glu
270 | GCA
Ala | GCG
Ala | | 816 | | CGG | CTA
Leu | TCG
Ser
275 | | CTG | GCC | ACG | ACG
Thr
280 | Gly | GIT
Val | CCT | TGC
Cys | GCA
Ala
285 | GCT
Ala | GTG
Val | CTC | 864 | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------| | GAC
Asp | GII
Val
290 | Val | ACT | GAA
Glu | GCG | GGA
Gly
295 | Arg | GAC
Asp | TGG
Trp | CTG
Leu | CTA
Leu
300 | TTG
Leu | GGC
Gly | GAA
Glu | GTG
Val | 912 | | CCG
Pro
305 | Gly | CAG
Gln | GAT
Asp | CTC | CTG
Leu
310 | Ser | TCT
Ser | CAC
His | CTT
Leu | GCT
Ala
315 | CCT | GCC | GAG
Glu | AAA
Lys | GTA
Val
320 | 960 | | TCC
Ser | ATC
Ile | ATG
Net | GCT
Ala | GAT
Asp
325 | GCA
Ala | ATG
Net | CGG | CGG
Arg | CTG
Leu
330 | CAT
His | ACG
Thr | CTT
Leu | GAT
Asp | CCG
Pro
335 | GCT
Ala | 1008 | | ACC | TGC
Cys | CCA
Pro | TTC
Phe
340 | GAC
Asp | CAC
His | CAA
Gln | GCG
Ala | AAA
Lys
345 | CAT
His | CGC | ATC | GAG
Glu | CGA
Arg
350 | GCA
Ala | CGT
Arg | 1056 | | ACT
Thr | CGG
Arg | ATG
Met
355 | GAA
Glu | GCC
Ala | GGT
Gly | CTT
Leu | GTC
Val
360 | GAT
Asp | CAG
Gln | GAT
Asp | GAT
Asp | CTG
Leu
365 | GAC
Asp | GAA
Glu | GAG
Glu | 1104 | | CAT
His | CAG
Gln
370 | Gly | CTC
Leu | GCG
Ala | CCA
Pro | GCC
Ala
375 | GAA
Glu | CTG
Leu | TTC
Phe | GCC
Ala | AGG
Arg
380 | CTC
Leu | AAG
Lys | GCG
Ala | CGC
Arg | 1152 | | ATG
Net
385 | CCC
Pro | gac
Asp | GJ y | GAG
Glu | GAT
Asp
390 | CTC
Leu | GTC
Val | GTG
Val | ACC
Thr | CAT
His
395 | GGC
Gly | GAT
Asp | GCC | TGC
Cys | TIG
Leu
400 | 1200 | | CCG
Pro | TAA
Taa | ATC
Ile | ATG
Ket | GIG
Val
405 | GAA
Glu | AAT
Asn | GGC
Gly | CGC
Arg | TTT
Phe
410 | TCT
Ser | GGA
Gly | TTC
Phe | ATC
Ile | GAC
Asp
415 | TGT
Cys | 1248 | | GGC
Gly | CGG
Arg | CTG
Leu | GGT
Gly
420 | GIG
Val | GCG
Ala | GAC
Asp | CGC | TAT
Tyr
425 | CAG
Gln | GAC
A3p | ATA
Ile | GCG
Ala | TTG
Leu
430 | GCT
Ala | ACC
Thr | 1296 | | CGT
Arg | GAT
Asp | ATT
Ile
435 | GCT
Ala | GAA
Glu | GAG
Glu | CTT
Leu | GGC
Gly
440 | GCC
Gly | GAA
Glu | TGG
Trp | GCT
Ala | GAC
Asp
445 | CGC
Arg | TTC
Phe | CTC
Leu | 1344 | | Val | CII
Leu
450 | TAC
Tyr | GIY | ATC
Ile | GCC
Ala | GCT
Ala
455 | CCC
Pro | GAT
Asp | TCG
Ser | CAG
Glm | CGC
Arg
460 | ATC
Ile | GCC
Ala | TTC
Phe | TAT
Tyr | 1392 | | CGC
Arg
465 | CTT
Leu | CTT
Leu | GAC
Asp | Glu | TTC
Phe
470 | TTC
Phe | TG | | | | | | | | | 1416 | ## (2) INFORMATION FOR SEQ ID NO:9: - (1) SEQUENCE CHARACTERISTICS: - LENGTH: 471 amino acids - TYPE: amino acid - (D) TOPOLOGY: linear - (11) MOLECULE TYPE: protein - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:9: Het Val Arg Pro Leu Asn Cys Ile Val Ala Val Ser Gln Asn Het Gly 1 10 15 Ile Gly Lys Asn Gly Asp Arg Pro Trp Pro Pro Leu Arg Asn Glu Phe 20 25 30 Lys Tyr Phe Gln Arg Net Thr Thr Thr Ser Ser Val Glu Gly Lys Gln 35 40 Asn Leu Val Ile Het Gly Arg Lys Thr Trp Phe Ser Ile Pro Glu Lys 50 60 Asn Arg Pro Leu Lys Asp Arg Ile Asn Ile Val Leu Ser Arg Glu Leu 65 70 75 80 Lys Glu Pro Pro Arg Gly Ala His Phe Leu Ala Lys Ser Leu Asp Asp 85 90 95 Ala Leu Arg Leu Ile Glu Gln Pro Glu Leu Ala Ser Lys Val Asp Het 100 105 110 Val Trp Ile Val Gly Gly Ser Ser Val Tyr Gln Glu Ala Het Asn
Gln 115 120 125 Pro Gly His Leu Arg Leu Phe Val Thr Arg Ile Met Gln Glu Phe Glu Ser Asp Thr Phe Phe Pro Glu Ile Asp Leu Gly Lys Tyr Lys Leu Leu 145 150 160 Pro Glu Tyr Pro Gly Val Leu Ser Glu Val Gln Glu Glu Lys Gly Ile 165 170 175 Lys Tyr Lys Phe Glu Val Tyr Glu Lys Lys Asp Ala Ser Val Thr Val Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Met Ile Glu Gln Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val Glu 210 215 220 | Arg
225 | Leu | Phe | Gly | Tyr | Asp
230 | Trp | Ala | Gln | Gln | Thr
235 | Ile | Gly | Cys | Ser | Asp
240 | |------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|-------------------| | Ala | Ala | Val | Phe | Arg
245 | Leu | Ser | Ala | Gln | Gly
250 | Arg | Pro | Val | Leu | Phe
255 | Val | | Lys | Thr | Asp | Leu
260 | Ser | Gly | Ala | Leu | Asn
265 | Glu | Leu | Gln | Asp | Glu
270 | Ala | Ala | | Arg | Leu | Ser
275 | Trp | Leu | Ala | Thr | Thr
280 | Gly | Val | Pro | Cys | Ala
285 | Ala | Val | Leu | | Asp | ۷al
290 | Val | Thr | Glu | Ala | Gly
295 | Arg | Asp | Trp | Leu | Leu
300 | Leu | Gly | Glu | Val | | Pro
305 | Gly | Gln | Asp | Leu | Leu
310 | Ser | Ser | His | Leu | Ala
315 | Pro | Ala | Glu | Lys | Val
320 | | Ser | Ile | Ket | Ala | Asp
325 | Ala | Met | Arg | Arg | Leu
330 | His | Thr | Leu | Asp | Pro
335 | Ala | | Thr | Cys | Pro | Phe
340 | Asp | His | Gln | Ala | Lys
345 | His | Arg | Ile | Glu | Arg
350 | Ala | Arg | | Thr | Arg | Met
355 | Glu | Ala | Gly | Leu | Val
260 | Asp | Gln | Asp | Asp | Leu
365 | Asp | Glu | Glu | | His | Gln
370 | Gly | Leu | Ala | Pro | Ala
375 | Glu | Leu | Phe | Ala | Arg
380 | Leu | Lys | Ala | Arg | | Het
385 | Pro | Asp | Gly | Glu | Asp
390 | Leu | Val | Val | Thr | His
395 | Gly
 | Asp | Ala | Cys | Leu
400 | | Pro | Asd | Ile | Het | Val
405 | Glu | Asn | Gly | Arg | Phe
410 | Ser | Gly | Phe | Ile | Asp
415 | Cys | | Gly | Arg | Leu | Gly
420 | Val | Ala | Asp | Arg | Tyr
425 | Gln | Asp | Ile | Ala | Leu
430 | Ala | Thr | | Arg | Asp | Ile
435 | Ala | Glu | Glu | Leu | Gly
440 | Gly | Glu | Trp | Ala | Asp
445 | Arg | Phe | Leu | | Val | Leu
450 | Tyr | Gly | Ile | Ala | Ala
455 | Pro | Asp | Ser | Gln | Arg
460 | Ile | Ala | Phe | Tyr | | Arg
465 | | Leu | Asp | Glu | Phe
470 | Phe | | | | | | | | | | #### What is claimed is: - A biosynthetic protein comprising first and second protein domains biologically active individually or together, said domains being connected by a peptide linker comprising (Ser, Ser, Ser, Gly) where Y > 1. - 2. A biosynthetic protein comprising first and second protein domains biologically active individually or together, said domains being connected by a peptide linker comprising (X, X, X, X, Gly)_y where Y ≥ 1, up to 2 Xs in each unit are Thr, and the remaining Xs in each unit are Ser. - The protein of claim 2 wherein the linker comprises at least 75% serine residues. - 4. The protein of claim 1 or 2 wherein one of said protein domains comprises an antibody heavy chain variable region (VH) and the other of said protein domains comprises an antibody light chain variable region (VL). - The protein of claim 4 labeled with a radioactive isotope. - 6. The protein of claim 1 or 2 wherein the first polypeptide domain comprises a polypeptide ligand and the second protein domain comprises a polypeptide effector, said ligand being capable of binding to a receptor or adhesion molecule on a cell and said effector being capable of affecting the metabolism of the cell. - The protein of claim 6, wherein the ligand is an sFv fusion protein, or an antibody fragment. - The protein of claim 6, wherein the effector is a toxin. - The protein of claim I, wherein y is any integer selected to optimize the biological function and three dimensional conformation of the fusion protein composition. - 10. The protein of claim 1 comprising the linker sequence set forth in sequence ID No. 1. - 11. The protein of claim 4, wherein y is an integer between 1 and 5. - 12. A method for producing a fusion protein, comprising: transforming a cell with a DNA construct encoding the protein of claim 1 or 2; inducing the transformed cell to express said fusion protein; and collecting said expressed fusion protein. - 13. A DNA encoding the protein of claim 1 or 2. - 14. A cell which expresses the DNA of claim 13. - 15. A biosynthetic binding protein comprising two domains, one mimicking the structure of a V_L and the other mimicking the structure of a V_H , joined by a linker region, wherein said linker region comprises between 8 and 30 amino acid residues and at least 40% of the residues are serine. - 16. The protein of claim 15 wherein at least 60% of the residues are serine. - 17. The protein of claim 15 wherein the linker is free of charged amino acid sequences. - 18. The protein of claim 15 wherein the linker consists of serine and glycine amino acid residues. - 19. The protein of claim 15 wherein the linker region comprises threonine. #### AMENDED CLAIMS [received by the International Bureau on 5 August 1992 (05.08.92); original claim 3 deleted; original claim 2 amended; remaining claims unchanged but renumbered (3 pages)] - A biosynthetic protein comprising first and second protein domains biologically active individually or together, said domains being connected by a peptide linker comprising (Ser, Ser, Ser, Ser, Gly), where Y ≥ 1. - 2. A biosynthetic protein comprising first and second protein domains biologically active individually or together, said domains being connected by a peptide linker comprising (X, X, X, X, Gly, where Y ≥ 1, up to 2 Xs in each unit are Thr, and the remaining Xs in each unit are Ser, wherein the linker comprises at least 75% serine residues. - 3. The protein of claim 1 or 2 wherein one of said protein domains comprises an antibody heavy chain variable region (VH) and the other of said protein domains comprises an antibody light chain variable region (VL). - The protein of claim 3 labeled with a radioactive isotope. - 5. The protein of claim 1 or 2 wherein the first polypeptide domain comprises a polypeptide ligand and the second protein domain comprises a polypeptide effector, said ligand being capable of binding to a receptor or adhesion molecule on a cell and said effector being capable of affecting the metabolism of the cell. - 6. The protein of claim 5, wherein the ligand is an sFv fusion protein, or an antibody fragment. - The protein of claim 5, wherein the effector is a toxin. - 8. The protein of claim 1, wherein y is any integer selected to optimize the biological function and three dimensional conformation of the fusion protein composition. - 9. The protein of claim 1 comprising the linker sequence set forth in sequence ID No. 1. - 10. The protein of claim 3, wherein y is an integer between 1 and 5. - 11. A method for producing a fusion protein, comprising: transforming a cell with a DNA construct encoding the protein of claim 1 or 2; inducing the transformed cell to express said fusion protein; and collecting said expressed fusion protein. - 12. A DNA encoding the protein of claim 1 or 2. - 13. A cell which expresses the DNA of claim 12. - 14. A biosynthetic binding protein comprising two domains, one mimicking the structure of a $\rm V_L$ and the other mimicking the structure of a $\rm V_H$, joined by a linker region, wherein said linker region comprises between 8 and 30 amino acid residues and at least 40% of the residues are serine. - 15. The protein of claim 14 wherein at least 60% of the residues are serine. - 16. The protein of claim 14 wherein the linker is free of charged amino acid sequences. - 17. The protein of claim 14 wherein the linker consists of serine and glycine amino acid residues. - 18. The protein of claim 14 wherein the linker region comprises threonine.